Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Influenza and other respiratory viruses ; 17(3), 2023.
Article in English | EuropePMC | ID: covidwho-2276321

ABSTRACT

Background US recommendations for COVID‐19 vaccine boosters have expanded in terms of age groups covered and numbers of doses recommended, whereas evolution of Omicron sublineages raises questions about ongoing vaccine effectiveness. Methods We estimated effectiveness of monovalent COVID‐19 mRNA booster vaccination versus two‐dose primary series during a period of Omicron variant virus circulation in a community cohort with active illness surveillance. Hazard ratios comparing SARS‐CoV‐2 infection between booster versus primary series vaccinated individuals were estimated using Cox proportional hazards models with time‐varying booster status. Models were adjusted for age and prior SARS‐CoV‐2 infection. The effectiveness of a second booster among adults ≥50 years of age was similarly estimated. Results The analysis included 883 participants ranging in age, from 5 to >90 years. Relative effectiveness was 51% (95% CI: 34%, 64%) favoring the booster compared with primary series vaccination and did not vary by prior infection status. Relative effectiveness was 74% (95% CI: 57%, 84%) at 15 to 90 days after booster receipt, but declined to 42% (95% CI: 16%, 61%) after 91 to 180 days, and to 36% (95% CI: 3%, 58%) after 180 days. The relative effectiveness of a second booster compared to a single booster was 24% (95% CI: −40% to 61%). Conclusions An mRNA vaccine booster dose added significant protection against SARS‐CoV‐2 infection, but protection decreased over time. A second booster did not add significant protection for adults ≥50 years of age. Uptake of recommended bivalent boosters should be encouraged to increase protection against Omicron BA.4/BA.5 sublineages.

2.
Viruses ; 15(2), 2023.
Article in English | EuropePMC | ID: covidwho-2273984

ABSTRACT

The COVID-19 pandemic has served as a stark reminder that outbreaks of novel pathogens (i.e., those not previously encountered by humans) have always plagued mankind and will continue to do so. The COVID-19 pandemic has also taught us that a single exposure to a novel pathogen is typically not sufficient to build robust population immunity that exists against common respiratory viruses. Robust population-level immunity can be achieved through repeated natural infection (typically at the cost of high mortality and overwhelmed public health resources) and/or repeated vaccination (which may be limited by vaccine availability, a country's economic resources, and/or vaccine hesitancy). Here, we suggest that the broader use of antivirals could be a mitigation strategy to limit severe disease and the burden on healthcare systems during widespread virus circulation while allowing the buildup of population immunity.

3.
Influenza Other Respir Viruses ; 17(3): e13104, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276322

ABSTRACT

Background: US recommendations for COVID-19 vaccine boosters have expanded in terms of age groups covered and numbers of doses recommended, whereas evolution of Omicron sublineages raises questions about ongoing vaccine effectiveness. Methods: We estimated effectiveness of monovalent COVID-19 mRNA booster vaccination versus two-dose primary series during a period of Omicron variant virus circulation in a community cohort with active illness surveillance. Hazard ratios comparing SARS-CoV-2 infection between booster versus primary series vaccinated individuals were estimated using Cox proportional hazards models with time-varying booster status. Models were adjusted for age and prior SARS-CoV-2 infection. The effectiveness of a second booster among adults ≥50 years of age was similarly estimated. Results: The analysis included 883 participants ranging in age, from 5 to >90 years. Relative effectiveness was 51% (95% CI: 34%, 64%) favoring the booster compared with primary series vaccination and did not vary by prior infection status. Relative effectiveness was 74% (95% CI: 57%, 84%) at 15 to 90 days after booster receipt, but declined to 42% (95% CI: 16%, 61%) after 91 to 180 days, and to 36% (95% CI: 3%, 58%) after 180 days. The relative effectiveness of a second booster compared to a single booster was 24% (95% CI: -40% to 61%). Conclusions: An mRNA vaccine booster dose added significant protection against SARS-CoV-2 infection, but protection decreased over time. A second booster did not add significant protection for adults ≥50 years of age. Uptake of recommended bivalent boosters should be encouraged to increase protection against Omicron BA.4/BA.5 sublineages.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Aged, 80 and over , SARS-CoV-2 , RNA, Messenger
4.
Viruses ; 15(1)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2216953

ABSTRACT

One of the most pressing and consequential problems in infectious disease research is to better understand the potential of viruses to cause a pandemic, or, in simple terms, determine which virus will cause the next pandemic. We here define pandemics as WHO-declared pandemics, or disease outbreaks commonly referred to as pandemics that predate the WHO pandemic framework. Despite extensive research in the field of infectious diseases in recent decades, all pandemics have found us unprepared, with enormous losses of human lives, tremendous costs for public health, and vast and potentially long-lasting economic losses. Here, we discuss viruses that may cause a pandemic in the future.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Pandemics , Disease Outbreaks
5.
Viruses ; 15(2)2023 01 21.
Article in English | MEDLINE | ID: covidwho-2200905

ABSTRACT

The COVID-19 pandemic has served as a stark reminder that outbreaks of novel pathogens (i.e., those not previously encountered by humans) have always plagued mankind and will continue to do so. The COVID-19 pandemic has also taught us that a single exposure to a novel pathogen is typically not sufficient to build robust population immunity that exists against common respiratory viruses. Robust population-level immunity can be achieved through repeated natural infection (typically at the cost of high mortality and overwhelmed public health resources) and/or repeated vaccination (which may be limited by vaccine availability, a country's economic resources, and/or vaccine hesitancy). Here, we suggest that the broader use of antivirals could be a mitigation strategy to limit severe disease and the burden on healthcare systems during widespread virus circulation while allowing the buildup of population immunity.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/therapeutic use , Pandemics/prevention & control , COVID-19/epidemiology , Disease Outbreaks , Vaccination
6.
EMBO Mol Med ; 14(4): e15352, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1680151

ABSTRACT

In virology, the term seasonality describes variations in virus prevalence at more or less regular intervals throughout the year. Specifically, it has long been recognized that outbreaks of human influenza viruses, respiratory syncytial virus (RSV), and human coronaviruses occur in temperate climates during the winter season, whereas low activity is detected during the summer months. Other human respiratory viruses, such as parainfluenza viruses, human metapneumoviruses, and rhinoviruses, show highest activity during the spring or fall season in temperate regions, depending on the virus and subtype. In tropical climates, influenza viruses circulate throughout the year and no distinct seasonal patterns are observed, although virus outbreaks tend to spike during the rainy season. Overall, seasonality is more pronounced with greater distance from the equator, and tends to be less pronounced in regions closer to the equator (Li et al, 2019).


Subject(s)
Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , Viruses/genetics
7.
Viruses ; 14(3)2022 03 09.
Article in English | MEDLINE | ID: covidwho-1732253

ABSTRACT

Assays using ELISA measurements on serially diluted serum samples have been heavily used to measure serum reactivity to SARS-CoV-2 antigens and are widely used in virology and elsewhere in biology. We test a method using Bayesian hierarchical modelling to reduce the workload of these assays and measure reactivity of SARS-CoV-2 and HCoV antigens to human serum samples collected before and during the COVID-19 pandemic. Inflection titers for SARS-CoV-2 full-length spike protein (S1S2), spike protein receptor-binding domain (RBD), and nucleoprotein (N) inferred from 3 spread-out dilutions correlated with those inferred from 8 consecutive dilutions with an R2 value of 0.97 or higher. We confirm existing findings showing a small proportion of pre-pandemic human serum samples contain cross-reactive antibodies to SARS-CoV-2 S1S2 and N, and that SARS-CoV-2 infection increases serum reactivity to the beta-HCoVs OC43 and HKU1 S1S2. In serial dilution assays, large savings in resources and/or increases in throughput can be achieved by reducing the number of dilutions measured and using Bayesian hierarchical modelling to infer inflection or endpoint titers. We have released software for conducting these types of analysis.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Pandemics , Seasons , Workload
8.
Influenza Other Respir Viruses ; 16(4): 607-612, 2022 07.
Article in English | MEDLINE | ID: covidwho-1703642

ABSTRACT

Reduced COVID-19 vaccine effectiveness (VE) has been observed with increasing predominance of SARS-CoV-2 Delta (B.1.617.2) variant. Two-dose VE against laboratory-confirmed SARS-CoV-2 infection (symptomatic and asymptomatic) was estimated using Cox proportional hazards models with time-varying vaccination status in a prospective rural community cohort of 1266 participants aged ≥12 years. Between November 3, 2020 and December 7, 2021, VE was 56% for mRNA COVID-19 vaccines overall, 65% for Moderna, and 50% for Pfizer-BioNTech. VE when Delta predominated (June to December 2021) was 54% for mRNA COVID-19 vaccines overall, 59% for Moderna, and 52% for Pfizer-BioNTech.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Prospective Studies , RNA, Messenger , Rural Population , SARS-CoV-2/genetics , Vaccine Efficacy , Wisconsin/epidemiology
9.
J Infect Dis ; 225(2): 282-286, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1556876

ABSTRACT

In hamsters, SARS-CoV-2 infection at the same time as or before H3N2 influenza virus infection resulted in significantly reduced influenza virus titers in the lungs and nasal turbinates. This interference may be correlated with SARS-CoV-2-induced expression of MX1.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Myxovirus Resistance Proteins/metabolism , SARS-CoV-2 , Virus Replication , Animals , Coinfection , Cricetinae , Humans , Mesocricetus
10.
China CDC Wkly ; 3(49): 1046-1048, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1548009

ABSTRACT

The number of influenza virus detections declined tremendously after the emergence and worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); an effect most likely caused by non-pharmaceutical interventions to slow the spread of SARS-CoV-2. Recent data suggest that influenza virus detection has slightly increased in parts of the world, perhaps owing to the relaxation of social distancing measures.

11.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1112312

ABSTRACT

Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Disease Susceptibility , SARS-CoV-2/physiology , Animals , COVID-19 Vaccines/adverse effects , Disease Models, Animal , Humans , Phylogeny
12.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012135

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL